9 research outputs found

    Brief Note: Fallicambarus (Creaserinus) fodiens (Cottle 1863) (Decapoda: Cambaridae) in West Virginia: A New State Record

    Get PDF
    Author Institution: Department of Zoology, The Ohio State University, University DriveA population of F. (C.) fodiens was found in the floodplain of the Ohio River, Mason County, West Virginia. This is a new state record and the second record of the species on the unglaciated Appalachian Plateau. An analysis of burrow diameters indicated that three age classes are probably present

    Transcription of liver X receptor is down-regulated by 15-deoxy-Δ12,14-prostaglandin J2 through oxidative stress in human neutrophils

    Get PDF
    Liver X receptors (LXRs) are ligand-activated transcription factors of the nuclear receptor superfamily. They play important roles in controlling cholesterol homeostasis and as regulators of inflammatory gene expression and innate immunity, by blunting the induction of classical pro-inflammatory genes. However, opposite data have also been reported on the consequences of LXR activation by oxysterols, resulting in the specific production of potent pro-inflammatory cytokines and reactive oxygen species (ROS). The effect of the inflammatory state on the expression of LXRs has not been studied in human cells, and constitutes the main aim of the present work. Our data show that when human neutrophils are triggered with synthetic ligands, the synthesis of LXRα mRNA became activated together with transcription of the LXR target genes ABCA1, ABCG1 and SREBP1c. An inflammatory mediator, 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2), hindered T0901317-promoted induction of LXRα mRNA expression together with transcription of its target genes in both neutrophils and human macrophages. This down-regulatory effect was dependent on the release of reactive oxygen species elicited by 15dPGJ2, since it was enhanced by pro-oxidant treatment and reversed by antioxidants, and was also mediated by ERK1/2 activation. Present data also support that the 15dPGJ2-induced serine phosphorylation of the LXRα molecule is mediated by ERK1/2. These results allow to postulate that down-regulation of LXR cellular levels by pro-inflammatory stimuli might be involved in the development of different vascular diseases, such as atherosclerosis.Funding provided by the Ministerio de Educación y Ciencia (BFU2006-13802) and the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (P08-CVI-03550) (P06-CTS-01936) Consejería de Salud, Junta de Andalucía (CS 0116/2007)

    Adaptations of lateral hand movements to early and late visual occlusion in catching

    Get PDF
    Contains fulltext : 139154.pdf (publisher's version ) (Open Access)Recent studies suggested that the control of hand movements in catching involves continuous vision-based adjustments. More insight into these adjustments may be gained by examining the effects of occluding different parts of the ball trajectory. Here, we examined the effects of such occlusion on lateral hand movements when catching balls approaching from different directions, with the occlusion conditions presented in blocks or in randomized order. The analyses showed that late occlusion only had an effect during the blocked presentation, and early occlusion only during the randomized presentation. During the randomized presentation movement biases were more leftward if the preceding trial was an early occlusion trial. The effect of early occlusion during the randomized presentation suggests that the observed leftward movement bias relates to the rightward visual acceleration inherent to the ball trajectories used, while its absence during the blocked presentation seems to reflect trial-by-trial adaptations in the visuomotor gain, reminiscent of dynamic gain control in the smooth pursuit system. The movement biases during the late occlusion block were interpreted in terms of an incomplete motion extrapolation—a reduction of the velocity gain—caused by the fact that participants never saw the to-be-extrapolated part of the ball trajectory. These results underscore that continuous movement adjustments for catching do not only depend on visual information, but also on visuomotor adaptations based on non-visual information.14 p

    Climate signatures through Marine Isotope Stage 19 in the Montalbano Jonico section (Southern Italy): A land–sea perspective

    No full text

    Signal integration by mTORC1 coordinates nutrient input with biosynthetic output

    No full text

    Probing the evolution, ecology and physiology of marine protists using transcriptomics

    No full text
    corecore